A New Approach to α-Bromochalcones

Lei WANG, Zhi Zhen HUANG*, Dong Xiang FENG

Department of Chemistry, Zhejiang University at Xixi Campus, Hangzhou 310028

Abstract: α -Bromo benzoylmethylene triphenylphosphorane **3** has been synthesized by the reaction of benzoylmethylene triphenylphosphorane **1** with N-bromosuccinimide in the yield of 87% and can react with aromatic aldehydes **4** to give α -bromochalcones **5** in good yields.

Keywords: α -Bromo benzoylmethylene triphenylphosphorane, α -bromochalcones, Wittig reaction, synthesis.

Recent studies show that chalcones have many physiological activities¹⁻³. Gasha *et al.* found that α -bromochalcones had even higher physiological activities^{3,4} than chalcones. However, there are only few reports on the synthesis of α -bromochalcones, which involved in the formation of dibromination and dehydrobromination of chalcones^{5,6}. It is well known that Wittig reaction is one of the most important method for forming carbon-carbon double bonds. Therefore we tried to synthesize α -bromo benzoylmethylene triphenylphosphorane **3** and explored its Wittig reaction to form vinyl bromide unit in α -bromochalcones **5**.

We reacted two equivalents benzoylmethylene triphenylphosphorane **1** with one equivalent N-bromosuccinimide (NBS) in THF and found the transylidation reaction took place readily to obtain α -bromo benzoylmethylene triphenylphosphorane **3** in the yield of 87% (See **Scheme 1**)⁷. α -Bromo ylide **3** has sufficient activity to undergo Wittig reaction with aromatic aldehyde to form α -bromochalcones **5** in good yields (See **Table 1**). The reaction has good stereoselectivity to form Z-type of α -bromo-chalcones **5** predominatly.

Scheme 1 $Ph_{3}P=CHCOPh + \bigcup_{O}^{O} \xrightarrow{THF} Ph_{3}P=CCOPh + [Ph_{3}PCH_{2}COPh][\xrightarrow{O} \\ Br + [Ph_{3}PCH_{2}COPh][\xrightarrow{O} \\ O \\ Br + ArCHO \xrightarrow{CHCl_{3} / THF} ArCH=CCOPh \\ Br & Br \\ 3 & 4 & 5 \end{bmatrix}$

Lei WANG et al.

Product	Ar	Reaction Time (hr)	Isolated Yields (%)	Z/E
5a	$4-NO_2C_6H_4$	14	84	100/0
5b	4-ClC ₆ H ₄	15	80	100/0
5c	C ₆ H ₅	15	73	91/9
5d	Furryl	16	61	87/13
5e	$4-CH_3C_6H_4$	13	64	89/11
5f	4-Me ₂ NC ₆ H ₄	14	67	93/7

Table 1Synthesis of α -Bromochalcones

Compared with the previous $protocol^{5,6}$ for the synthesis of α -bromochalcones **5**, this method has the advantages of mild reaction conditions, simple procedures, good yields and high stereoselectivities.

Acknowledgments

We thank the National Natural Science Foundation of China for financial support of the project 29972036.

References and Notes

- 1. K. Bowden, J Chem. Res., Synop., 1990, 12, 2801.
- 2. A. A. Biligin, E. Palaska, U. AbbAbbasoglu, FABAD Farm. Bilimler Derg., 1991, 16 (2), 81.
- 3. M. Gasha, A. Tsuji, Y. Sakurai, M. Kurumi, T. Endo, S. Sato, K. Yamaguchi, *Yakugaku Zasshi*, 1972, 92 (6), 719.
- 4. K. Yamaguchi, Japan, 72, 47, 016, 27 Nov., 1972.
- 5. R. D. Abell, W. Siddall, J. Chem. Soc., 1953, 2804.
- N. N. Koles, V. V. Orlov, B. V. Paponov, V. N. Baumer, *Chem. Heterocycl. Comp.*, 1998, 34 (10), 1189.
- (10), 1132.
 Spectra data for ylide 3 are as follows: ¹H NMR (CDCl₃, δ ppm): 7.70 7.65 (m, 8H), 7.58 7.51 (m, 4H), 7.50 7.43 (m, 8H); ¹³C NMR (CDCl₃, δppm): 184.9, 141.3, 133.2, 132.1, 128.8, 129.4, 128.9, 127.7, 127.0, 51.2; MS (m/z): 458 (M⁺, 14.5), 77 (100.0).

Received 4 June, 2001